492
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Effects of sitting postures on risks for deep tissue injury in the residuum of a transtibial prosthetic-user: a biomechanical case study

, , &
Pages 1009-1019 | Received 20 May 2010, Accepted 24 Jun 2010, Published online: 05 Aug 2010
 

Abstract

Transtibial amputation prosthetic-users are at risk of developing deep tissue injury (DTI) while donning their prosthesis for prolonged periods; however, no study addresses the mechanical loading of the residuum during sitting with a prosthesis. We combined MRI-based 3D finite element modelling of a residuum with an injury threshold and a muscle damage law to study risks for DTI in one sitting subject in two postures: 30°-knee-flexion vs. 90°-knee-flexion. We recorded skin-socket pressures, used as model boundary conditions. During the 90°-knee-flexion simulations, major internal muscle injuries were predicted (>1000 mm3). In contrast, the 30°-knee-flexion simulations only produced minor injury ( < 14 mm3). Predicted injury rates at 90°-knee-flexion were over one order of magnitude higher than those at 30°-knee-flexion. We concluded that in this particular subject, prolonged 90°-knee-flexion sitting theoretically endangers muscle viability in the residuum. By expanding the studies to large subject groups, this research approach can support development of guidelines for DTI prevention in prosthetic-users.

Acknowledgements

This work was partially supported by the Chief Scientist's Office of the Ministry of Health, Israel (Grant #3-2028, AG), and by the Internal Research Fund at Tel Aviv University (AG).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.