200
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Inducing occlusion effect in Y-shaped vessels using high-intensity focused ultrasound: finite element analysis and phantom validation

, &
Pages 323-332 | Received 29 Sep 2009, Accepted 25 Oct 2010, Published online: 08 Feb 2011
 

Abstract

High-intensity focused ultrasound (HIFU) surgery offers a truly non-invasive treatment method with no skin incision, but precise targeting of tumour tissues for thermotherapy. Clinical experience reveals that the efficacy of tumour destruction not only involves in coagulating necrosis, but also involves in damaging the tumour vessels, which play an important role in tumour progression. These vessels take the elevated temperature away by perfusion, resulting in uncertainty of the occlusion effect during HIFU treatment. In this study, a Y-shaped vessel model comprising common and tumour vessels and an indirect fabrication method are proposed. The physical properties of the fabricated vessel phantom are measured and compared with human tissue. Simulation is performed using finite element modelling according to the tissue parameter, perfusion rate of the tumour vessel and treatment parameters including power intensity and exposure duration. The phantom experiments are carried out with perfusion of egg white to validate the threshold time prediction obtained from the simulation results. Our findings reveal that the threshold time obtained from experiments is consistent with the simulated one.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.