519
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Development of a finite element model of the tibia for short-duration high-force axial impact loading

&
Pages 205-212 | Received 31 May 2010, Accepted 13 Dec 2010, Published online: 18 Feb 2011
 

Abstract

Finite element (FE) models can allow computer simulations of impact loading, providing a useful companion to cadaveric testing. These models allow injury evaluations to be conducted under a variety of conditions, but must be validated against experimental data. An FE model of a cadaveric tibia was developed using geometry from CT scans, and the quality of the mesh was evaluated. Loading and boundary conditions from experimental tests were simulated, and the model was optimised to best represent the response of natural bone to impacts. The model was shown to have good agreement for impact force, duration, impulse and strain during simulation of three non-injurious and one injurious axial impact when compared with experimental test data for the specimen. Failure criteria were evaluated for their ability to predict fracture. This model of the tibia can be used for future injury prediction assessment studies.

Acknowledgements

This research was supported with funding from General Dynamics Land Systems Canada, Ontario Centres of Excellence, Canada Foundation for Innovation, Ontario Innovation Trust and Natural Sciences and Engineering Research Council of Canada.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.