327
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Three-dimensional finite element analysis of the maxillary central incisor in two different situations of traumatic impact

, , &
Pages 158-164 | Received 12 Feb 2011, Accepted 03 Aug 2011, Published online: 07 Sep 2011
 

Abstract

Dental trauma is one of the most common events in dental practice. However, few studies have investigated the biomechanical characteristics of these injuries. The objective of this study was to analyse the stress distribution in the dentoalveolar structures of a maxillary central incisor subjected to two situations of impact loading. The following loading forces were applied using a 3D finite element model: a force of 2000 N acting at an angle of 90°on the buccal surface of the crown and a vertical 2000 N force acting in the cleidocranial direction on the incisal surface of the tooth. Harmful stresses were observed in both situations, causing damage to both the tooth and adjacent tissue. However, the damage found in soft tissues such as periodontal ligament and dental pulp was negligible. In conclusion, injuries resulting from the traumatic situations were more damaging to the integrity of the tooth and its associated hard-tissue structures.

Acknowledgements

This study was supported by CNPq through a PIBIC fellowship granted to Bruno Rocha da Silva. The authors thank Simpleware Ltd. for help with the fabrication of the jaw models.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.