207
Views
3
CrossRef citations to date
0
Altmetric
Article

An affine micro-sphere-based constitutive model, accounting for junctional sliding, can capture F-actin network mechanics

, , &
Pages 1002-1012 | Received 23 Sep 2011, Accepted 07 Dec 2011, Published online: 09 Feb 2012
 

Abstract

Actin filaments are a major component of the cytoskeleton and play a crucial role in cell mechanotransduction. F-actin networks can be reconstituted in vitro and their mechanical behaviour has been studied experimentally. Constitutive models that assume an idealised network structure, in combination with a non-affine network deformation, have been successful in capturing the elastic response of the network. In this study, an affine network deformation is assumed, in which we propose an alternative 3D finite strain constitutive model. The model makes use of a micro-sphere to calculate the strain energy density of the network, which is represented as a continuous distribution of filament orientations in space. By incorporating a simplified sliding mechanism at the filament-to-filament junctions, premature filament locking, inherent to affine network deformation, could be avoided. The model could successfully fit experimental shear data for a specific cross-linked F-actin network, demonstrating the potential of the novel model.

Acknowledgements

HVO acknowledges financial support from the Research Foundation – Flanders (FWO) and from the Aragonese Government.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.