187
Views
13
CrossRef citations to date
0
Altmetric
Articles

Stochastic multi-scale prediction on the apparent elastic moduli of trabecular bone considering uncertainties of biological apatite (BAp) crystallite orientation and image-based modelling

, &
Pages 162-174 | Received 24 Nov 2012, Accepted 11 Mar 2013, Published online: 14 Apr 2013
 

Abstract

An assessment of the mechanical properties of trabecular bone is important in determining the fracture risk of human bones. Many uncertainty factors contribute to the dispersion of the estimated mechanical properties of trabecular bone. This study was undertaken in order to propose a computational scheme that will be able to predict the effective apparent elastic moduli of trabecular bone considering the uncertainties that are primarily caused by image-based modelling and trabecular stiffness orientation. The effect of image-based modelling which focused on the connectivity was also investigated. A stochastic multi-scale method using a first-order perturbation-based and asymptotic homogenisation theory was applied to formulate the stochastically apparent elastic properties of trabecular bone. The effective apparent elastic modulus was predicted with the introduction of a coefficient factor to represent the variation of bone characteristics due to inter-individual differences. The mean value of the predicted effective apparent Young's modulus in principal axis was found at approximately 460 MPa for respective 15.24% of bone volume fraction, and this is in good agreement with other experimental results. The proposed method may provide a reference for the reliable evaluation of the prediction of the apparent elastic properties of trabecular bone.

Acknowledgements

The authors would like to thank Prof. Yuji Nakajima and Prof. Hiroshi Kiyama (Osaka City University) for providing the bone specimen. We also wish to thank the donor's family for their generosity in the face of their bereavement. Next, the dedicated help from Dr Takuya Ishimoto and Dr Sayaka Miyabe (both from Osaka University) in preparing the micro-CT images for this research is acknowledged with gratitude. This study was also supported in part by the Ministry of Higher Education (MOHE), Malaysia under a Scholarship for Academicians Training Scheme.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.