612
Views
26
CrossRef citations to date
0
Altmetric
Articles

Finite element modelling approaches for well-ordered porous metallic materials for orthopaedic applications: cost effectiveness and geometrical considerations

&
Pages 845-854 | Received 15 Oct 2014, Accepted 17 Jul 2015, Published online: 10 Aug 2015
 

Abstract

The mechanical properties of well-ordered porous materials are related to their geometrical parameters at the mesoscale. Finite element (FE) analysis is a powerful tool to design well-ordered porous materials by analysing the mechanical behaviour. However, FE models are often computationally expensive. This article aims to develop a cost-effective FE model to simulate well-ordered porous metallic materials for orthopaedic applications. Solid and beam FE modelling approaches are compared, using finite size and infinite media models considering cubic unit cell geometry. The model is then applied to compare two unit cell geometries: cubic and diamond. Models having finite size provide similar results than the infinite media model approach for large sample sizes. In addition, these finite size models also capture the influence of the boundary conditions on the mechanical response for small sample sizes. The beam FE modelling approach showed little computational cost and similar results to the solid FE modelling approach. Diamond unit cell geometry appeared to be more suitable for orthopaedic applications than the cubic unit cell geometry.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.