214
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Numerical analysis of hemodynamics in spastic middle cerebral arteries

, , , &
Pages 1489-1496 | Received 27 Apr 2015, Accepted 18 Feb 2016, Published online: 04 Mar 2016
 

Abstract

Cerebral vasospasm (CVS) is the most common serious complication of subarachnoid hemorrhage. Among the many factors that are associated with the pathogenesis of CVS, hemodynamics plays an important role in the initiation and development of CVS. Numerical simulation was carried out to obtain the flow patterns and wall shear stress (WSS) distribution in spastic middle cerebral arteries. The blood was assumed to be incompressible, laminar, homogenous, Newtonian, and steady. Our simulations reveal that flow velocity and WSS level increase at the stenosis segment of the spastic vessels, but further downstream of stenosis, the WSS significantly decreases along the inner wall, and flow circulation and stagnation are observed. The hydrodynamic resistance increases with the increase of vessel spasm. Moreover, the change of flow field and hydrodynamic forces are not linearly proportional to the spasm level, and the rapid change of hemodynamic parameters is observed as the spasm is more than 50%. Accordingly, in the view of hemodynamic physiology, vessels with less than 30% stenosis are capable of self-restoration towards normal conditions. However, vessels with more than 50% stenosis may eventually lose their capacity to adapt to differing physiologic conditions due to the extreme non-physilogic hemodynamic environment, and the immediate expansion of the vessel lumen might be needed to minimize serious and non-reversible effects.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.