247
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

A nonlinear anisotropic inverse method for computational dissection of inhomogeneous planar tissues

&
Pages 1630-1646 | Received 05 Sep 2015, Accepted 05 Apr 2016, Published online: 02 May 2016
 

Abstract

Quantification of the mechanical behavior of soft tissues is challenging due to their anisotropic, heterogeneous, and nonlinear nature. We present a method for the ‘computational dissection’ of a tissue, by which we mean the use of computational tools both to identify and to analyze regions within a tissue sample that have different mechanical properties. The approach employs an inverse technique applied to a series of planar biaxial experimental protocols. The aggregated data from multiple protocols provide the basis for (1) segmentation of the tissue into regions of similar properties, (2) linear analysis for the small-strain behavior, assuming uniform, linear, anisotropic behavior within each region, (3) subsequent nonlinear analysis following each individual experimental protocol path and using local linear properties, and (4) construction of a strain energy data set W(E) at every point in the material by integrating the differential stress–strain functions along each strain path. The approach has been applied to simulated data and captures not only the general nonlinear behavior but also the regional differences introduced into the simulated tissue sample.

Notes

1 Available at the University of Minnesota http://bme.umn.edu/research/tissuemech.html

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.