301
Views
13
CrossRef citations to date
0
Altmetric
Articles

Glottis effects on the cough clearance process simulated with a CFD dynamic mesh and Eulerian wall film model

, , &
Pages 1326-1338 | Received 09 Mar 2017, Accepted 25 Jul 2017, Published online: 07 Aug 2017
 

Abstract

In this study, we have reproduced the cough clearance process with an Eulerian wall film model. The simulated domain is based on realistic geometry from the literature, which has been improved by adding the glottis and epiglottis. The vocal fold movement has been included due to the dynamic mesh method, considering different abduction and adduction angles and velocities. The proposed methodology captures the deformation of the flexible tissue, considers non-Newtonian properties for the mucus, and enables us to reproduce a single cough or a cough epoch. The cough efficiency (CE) has been used to quantify the overall performance of the cough, considering many different boundary conditions, for the analysis of the glottis effect. It was observed that a viscous shear force is the main mechanism in the cough clearance process, while the glottis closure time and the epiglottis position do not have a significant effect on the CE. The cough assistance devices improve the CE, and the enhancement rate grows logarithmically with the operating pressure. The cough can achieve an effective mucus clearance process, even with a fixed glottis. Nevertheless, the glottis closure substantially improves the CE results.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.