361
Views
15
CrossRef citations to date
0
Altmetric
Articles

Biomechanical comparison of conventional and optimised locking plates for the fixation of intraarticular calcaneal fractures: a finite element analysis

, , , , , & show all
Pages 1339-1349 | Received 07 Nov 2016, Accepted 27 Jul 2017, Published online: 03 Aug 2017
 

Abstract

Intraarticular calcaneal fractures can result in poor prognosis. Although operative fixation can improve the functional outcomes in most cases, surgical complications such as loss of reduction and wound healing problems may increase the risk of reoperation. Hence, this study aimed to design calcaneal locking plate with a lower profile and better biomechanical performance   and to compare the redesigned plate with the traditional calcaneal plate via the finite element method. A Sanders’ type II-C intraarticular calcaneal fracture was simulated. Two fixation models utilising the branch-like calcaneal locking plate and the full plate were constructed. Topology optimisation was conducted to generate a new calcaneal plate design. A biomechanical comparison among the three groups of plates was performed using the finite element method. For the fracture simulated in this study, the optimised plate was superior to the traditional plate in terms of fixation stability and safety but was reduced in volume by approximately 12.34%. In addition, more rational stress distributions were observed in the redesigned plate, underscoring the superiority of this new design in terms of fatigue strength. These results demonstrate that the topology optimisation can be used to design a new implant with a minimised profile and no loss of fixation stability.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.