372
Views
9
CrossRef citations to date
0
Altmetric
Articles

An open-source model and solution method to predict co-contraction in the finger

&
Pages 1373-1381 | Received 30 Apr 2016, Accepted 03 Aug 2017, Published online: 17 Aug 2017
 

Abstract

A novel open-source biomechanical model of the index finger with an electromyography (EMG)-constrained static optimization solution method are developed with the goal of improving co-contraction estimates and providing means to assess tendon tension distribution through the finger. The Intrinsic model has four degrees of freedom and seven muscles (with a 14 component extensor mechanism). A novel plugin developed for the OpenSim modelling software applied the EMG-constrained static optimization solution method. Ten participants performed static pressing in three finger postures and five dynamic free motion tasks. Index finger 3D kinematics, force (5, 15, 30 N), and EMG (4 extrinsic muscles and first dorsal interosseous) were used in the analysis. The Intrinsic model predicted co-contraction increased by 29% during static pressing over the existing model. Further, tendon tension distribution patterns and forces, known to be essential to produce finger action, were determined by the model across all postures. The Intrinsic model and custom solution method improved co-contraction estimates to facilitate force propagation through the finger. These tools improve our interpretation of loads in the finger to develop better rehabilitation and workplace injury risk reduction strategies.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.