424
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Force feasible set prediction with artificial neural network and musculoskeletal model

, , &
Pages 740-749 | Received 02 May 2018, Accepted 23 Aug 2018, Published online: 27 Oct 2018
 

Abstract

Developing tools to predict the force capabilities of the human limbs through the Force Feasible Set (FFS) may be of great interest for robotic assisted rehabilitation and digital human modelling for ergonomics. Indeed, it could help to refine rehabilitation programs for active participation during exercise therapy and to prevent musculoskeletal disorders. In this framework, the purpose of this study is to use artificial neural networks (ANN) to predict the FFS of the upper-limb based on joint centre Cartesian positions and anthropometric data. Seventeen right upper-limb musculoskeletal models based on individual anthropometric data are created. For each musculoskeletal model, the FFS is computed for 8428 different postures. For any combination of force direction and joint positions, ANNs can predict the FFS with high values of coefficient of determination (R2 > 0.89) between the true and predicted data.

Acknowledgements

This work was supported by the global innovation project.

Disclosure statement

The authors report that there are no conflicts of interests.

Notes

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.