255
Views
6
CrossRef citations to date
0
Altmetric
Articles

Image-based multi-scale mechanical analysis of strain amplification in neurons embedded in collagen gel

, , , , , & show all
Pages 113-129 | Received 04 Feb 2018, Accepted 15 Oct 2018, Published online: 17 Nov 2018
 

Abstract

A general multi-scale strategy is presented for modeling the mechanical environment of a group of neurons that were embedded within a collagenous matrix. The results of the multi-scale simulation are used to estimate the local strains that arise in neurons when the extracellular matrix is deformed. The distribution of local strains was found to depend strongly on the configuration of the embedded neurons relative to the loading direction, reflecting the anisotropic mechanical behavior of the neurons. More importantly, the applied strain on the surrounding extracellular matrix is amplified in the neurons for all loading configurations that are considered. In the most severe case, the applied strain is amplified by at least a factor of 2 in 10% of the neurons' volume. The approach presented in this paper provides an extension to the capability of past methods by enabling the realistic representation of complex cell geometry into a multi-scale framework. The simulation results for the embedded neurons provide local strain information that is not accessible by current experimental techniques.

Acknowledgments

Computing resources were provided by the Center for Computational Innovations at Rensselaer Polytechnic Institute.This work by supported by the National Institute of Health through Grant No. U01-EB016638.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.