355
Views
10
CrossRef citations to date
0
Altmetric
Articles

Numerical assessment of the human body response to a ground-level explosion

&
Pages 180-205 | Received 17 Jan 2018, Accepted 01 Nov 2018, Published online: 31 Dec 2018
 

Abstract

This paper presents the results of a numerical analysis of the behaviour of a human body after a ground-level explosion. The explosions were generated by condensed charges for different stand-off distances and various masses of explosive. The detonations points were located at distances of 1.0 and 2.0 meters from the dummy (human model) obstacle. The different masses of spherically-shaped TNT charges (0.4–1.0 kg) were initiated centrally. The blast wave propagation was generated using a coupled numerical design, which included Eulerian and Lagrangian descriptions for different domains, i.e. the dummy, air, and explosive domains.

The main objective of this work was to present the actual pressures and accelerations around the dummy and the body motion caused by the rapid shock of the pressure action. Reaction forces and moments of anatomical joints were provided. Furthermore, the safety criteria presented in the official standards were compared to the simulation results.

In this research, different positions against the loading masses were analysed. In each analysis the same standing human model was used. The dummy geometry was based on a medium size male (1.79 m, 84.8 kg). The human body was modelled as consisting of separate, rigid parts (with adequate masses and inertia moments) connected by joints exhibiting nonlinear behaviour. Anatomical ranges of motion were taken into consideration, and a dedicated numerical technique was proposed to model the resistance moment vs. the range of motion relations for the most important human body joints.

Acknowledgements

The authors would like to express their gratitude to the Polish National Centre for Research and Development (NCBiR) for partial financing this research under the Grant No. UOD-DEM-1-203/001. Furthermore, all numerical solutions presented here were prepared using the PL-GRID infrastructure at the Poznan Super Computing and Networking Centre (PCSS).

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.