276
Views
7
CrossRef citations to date
0
Altmetric
Articles

Fluid-structure interaction assessment of blood flow hemodynamics and leaflet stress during mitral regurgitation

, &
Pages 288-303 | Received 17 Apr 2018, Accepted 22 Nov 2018, Published online: 31 Dec 2018
 

Abstract

The aim of this study is to simulate the Mitral Regurgitation (MR) disease progression from mild to severe intensity. A Fluid Structure Interaction (FSI) model was developed to extract the hemodynamic parameters of blood flow in mitral regurgitation (MR) during systole. A two-dimensional (2D) geometry of the mitral valve was built based on the data resulting from Magnetic Resonance Imaging (MRI) dimensional measurements. The leaflets were assumed to be elastic. Using COMSOL software, the hemodynamic parameters of blood flow including velocity, pressure, and Von Mises stress contours were obtained by moving arbitrary Lagrange-Euler mesh. The results were obtained for normal and MR cases. They showed the effects of the abnormal distance between the leaflets on the amount of returned flow. Furthermore, the deformation of the leaflets was measured during systole. The results were found to be consistent with the relevant literature.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.