416
Views
5
CrossRef citations to date
0
Altmetric
Articles

Effect of turbulent models on left ventricle diastolic flow patterns simulation

, &
Pages 1229-1238 | Received 28 Feb 2019, Accepted 10 Aug 2019, Published online: 22 Aug 2019
 

Abstract

Vortex structures, as one of the most important features of cardiac flow, have a crucial impact on the left ventricle function and pathological conditions. These swirling flows are closely related to the presence of turbulence in left ventricle which is investigated in the current study. Using an extended model of the left heart, including a fluid-structure interaction (FSI) model of the mitral valve with a realistic geometry, the effect of using two numerical turbulent models, k-ε and Spalart-Allmaras (SA), on diastolic flow patterns is studied and compared with results from laminar flow model. As a result of the higher dissipation rate in turbulent models (k-ε and SA), vortices are larger and stronger in the laminar flow model. Comparing E/A ratio in the three models (Laminar, k-ε, and SA) with experimental data from healthy subjects, it is concluded that the results from k-ε model are more accurate.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.