284
Views
3
CrossRef citations to date
0
Altmetric
Articles

Biomechanical effects of corticotomy facilitated orthodontic anterior retraction: a 3-dimensional finite element analysis

, , , &
Pages 295-302 | Received 14 Sep 2018, Accepted 18 Jan 2020, Published online: 27 Jan 2020
 

Abstract

The objective of this study was to assess the biomechanical effects of different corticotomy designs used for orthodontic anterior retraction through finite element analysis. Materials and methods: A basic finite element model simulating retraction of anterior teeth was built reversely from CBCT films of an adult patient with protruded maxillary anterior teeth. Another thirteen FE models were created according to different corticotomy designs varied with site width and the extent of incision. The initial displacement, Von Mises stress and pressure stress of dento-alveolar structures was computerized and analyzed. Results: Corticotomy can increase the initial displacement of anterior segment including teeth and surrounding alveolar bone, change the distribution of Von Mises stress in cancellous bone and the pressure stress in periodontal ligament of anterior teeth. When the incision was near the periphery of apical, the anterior segment showed the greatest displacement, the cancellous bone at either sockets or incision region showed the maximum stress. Bilateral incision combined with palatal incision showed approximate initial displacement and stress distribution with circumscribing incision. While the incision width increased, the biomechanical effects of corticotomy amplified. Conclusions: Varied corticotomy designs can change the biomechanical effects on dento-alveolar structures. The incision near the periphery of apical and bilateral incision combined with palatal incision may be the optimized design used for retraction of anterior teeth.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

Supported by the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJ1702020); and the Science and Technology Project of Yubei District, Chongqing (Grant No. 2017 (Agriculture& Society) 44).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.