152
Views
3
CrossRef citations to date
0
Altmetric
Articles

Numerical analysis of local non-equilibrium heat transfer in layered spherical tissue during magnetic hyperthermia

&
Pages 968-980 | Received 15 Feb 2020, Accepted 03 Jun 2020, Published online: 12 Jun 2020
 

Abstract

A solid multi-layered concentric sphere with Gaussian space source is considered as the tissue model for magnetic hyperthermia treatment. The generalized dual-phase-lag model of bioheat transfer is used to describe the behavior of heat transport in tissue in the hyperthermia treatment process for accounting the local non-equilibrium effect. The effects of blood perfusion with the transient temperature are included in the tissue model. The hybrid numerical scheme based on Laplace transform, change of variables, and the modified discretization technique is extended to solve the present problem. The analytical solution for constant heat generation in the inner sphere is presented and evidences the accuracy and rationality of the present numerical results. In an ideal hyperthermia treatment, all the diseased tissues should be selectively heated without affecting any healthy tissue. Attempting to achieve the ideal temperature distribution, the thermal dose is estimated at the specified condition. The corresponding thermal efficacy of tumor damage has also been assessed based on the Arrenius equation.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This research was partly supported by the Ministry of Science and Technology in Taiwan through Grant MOST 108-2221-E-269-001.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.