313
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Tibial implant fixation in TKA worth a revision?—how to avoid stress-shielding even for stiff metallic implants

, , , &
Pages 320-332 | Received 14 Jul 2019, Accepted 26 Sep 2020, Published online: 16 Oct 2020
 

Abstract

In total knee arthroplasty (TKA), force is transmitted into the tibia by a combined plate-stem device along with cemented or cementless stem fixation. The present work analyzes this force transmission in finite element simulations with the main aim to avoid reported postsurgical bone density reduction as a consequence of a reduced tibial bone loading. In the numerical analysis different implant materials, stem/extension lengths and implant-to-stem interface conditions are considered, from a stiff fully cemented fixation to sliding contact conditions with a low friction coefficient. The impact of these variations on bone loading changes are measured by (i) decomposing the total force into parts mediated by the plate and by the stem and by (ii) post-surgery strain energy density (SED) deviations. Based on a bionics-inspired perspective on how nature in pre-operative conditions carries out force transfer from the knee joint into the tibia, a modified implant–bone interface is suggested that alters force transmission towards physiological conditions while preserving the geometries of the standard plate-stem endoprosthesis design. The key aspect is that the axial force is predominantly transmitted through the plate into proximal bone which requires a compliant bone-stem interface as realized by sliding friction conditions at a low friction coefficient. These interface conditions avoid stress shielding almost completely, preserve pre-surgery bone loading such that bone resorption is not likely to occur.

Additional information

Funding

BE acknowledges support by the Deutsche Forschungsgemeinschaft (DFG) within the Heisenberg program (grant no. EI 453/5-1).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.