360
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Inverse identification of hyperelastic constitutive parameters of skeletal muscles via optimization of AI techniques

, , , , &
Pages 1647-1659 | Received 06 Jan 2021, Accepted 17 Mar 2021, Published online: 31 Mar 2021
 

Abstract

Studies on the deformation characteristics and stress distribution in loaded skeletal muscles are of increasing importance. Reliable prediction of hyperelastic material parameters requires an inverse process, which possesses challenges. This work proposes two inverse procedures to identify the hyperelastic material parameters of skeletal muscles. The first one integrates nonlinear finite element method (FEM), random forest (RF) model, and Bayesian optimization (BO) algorithm. The other one integrates FEM, RF and hybrid Grid Search (GS), and Random Search (RS) algorithm. FEM models are first established to simulate nonlinear deformation of skeletal muscles subject to compression based on nonlinear mechanics principals. A dataset of nonlinear relationship between the nominal stress and principal stretch of skeletal muscles is created using our FEM models and the nonlinear relationship is learned through RF model. The BO, hybrid GS and RS algorithms are used to adjust the major model parameters in RF. Then the optimized RF is utilized to predict hyperelastic material parameters of skeletal muscles, with the help of uniaxial compression experiments. Intensive studies also have been carried out to compare the RF-BO approach with RF-Search approach, and the comparison results show that RF-BO approach is an effective and accurate approach to identify the hyperelastic material parameters of skeletal muscles. The present RF-BO model can be further extended for the predictions of constitutive parameters of other types of nonlinear soft materials.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

Natural Science Foundation of China (Grant No. 11832011) Tianjin Excellent Special correspondent Project (Grant No. 16JCTPJC53100) and Hebei Natural Science Foundation (Grand No. A2020202015).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.