295
Views
1
CrossRef citations to date
0
Altmetric
Research Article

The effects of sex and landing task on hip mechanics

ORCID Icon, &
Pages 1819-1827 | Received 13 Feb 2019, Accepted 20 Apr 2021, Published online: 19 Oct 2021
 

Abstract

Prevalence of femoroacetabular impingement syndrome is common in cutting sports. A first step to understanding the relationship between cutting sports and the development of femoroacetabular impingement is to investigate hip joint contact forces during such tasks. The purpose of this study was to explore sex and task differences in hip joint contact forces, estimated through musculoskeletal modeling, during single-leg drop landings and land-and-cuts. Kinematics and ground reaction forces were obtained from 38 adults performing drop landings and land-and-cut tasks. Simulations were performed in OpenSim to estimate lower extremity muscle forces and hip joint contact forces. Statistical parametric mapping was used to compare hip joint force waveforms between sex and task. There were no sex differences in hip joint forces, but landing trials were characterized by increased hip joint forces compared to land-and-cut trials. The hip joint force estimates obtained the current study could be used in future finite element models that incorporate bone growth models to understand the development of femoroacetabular impingement and design possible compensatory exercises.

Disclosure statement

The authors have no conflict of interest related to the present work to disclose.

Additional information

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.