234
Views
3
CrossRef citations to date
0
Altmetric
Article

Heuristic-based channel selection with enhanced deep learning for heart disease prediction under WBAN

&
Pages 1429-1448 | Received 08 Oct 2021, Accepted 30 Nov 2021, Published online: 14 Feb 2022
 

Abstract

The main intention of this proposal is to design and develop a new heart disease prediction model via WBAN using three stages. The first stage is data aggregation, in which data is scheduled in Time Division Multiple Access manner based on priority level, and the data from the public benchmark datasets are collected representing WBAN. In the second stage, a channel selection is performed using a developed hybrid metaheuristic algorithm named Tunicate Swarm-Sail Fish Optimization (TS-SFO) Algorithm. The main intention of the suggested channel selection algorithm is to solve the multi-objective problem based on certain constraints like Reference Signal Received Quality, Signal to Noise Ratio and channel capacity. The third stage is the heart disease prediction stage, in which the feature extraction and prediction are performed. The data transmitted in the selected channel is used for the feature extraction phase, where the weighted entropy-based statistical feature extraction is developed and extracts the essential statistical features. Then, an enhanced Recurrent Neural Network (RNN) is proposed by tuning certain parameters using the proposed TS-SFO for predicting heart disease with the help of extracted statistical features. Test results show that the flexible design and subsequent tuning of RNN hyper-parameters can achieve a high prediction rate.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.