451
Views
1
CrossRef citations to date
0
Altmetric
Articles

New method for reducing viscosity and shear stress in hydrogel 3D printing via multidimension vibration

ORCID Icon, , , , &
Pages 1796-1811 | Received 04 Sep 2021, Accepted 03 Feb 2022, Published online: 16 Feb 2022
 

Abstract

Microextrusion 3D bioprinting is a comparatively easy method to fabricate structures in tissue engineering. But high viscosity and wall shear stress in the tube and nozzle often lead to low cell survival rate of printed tissue. To reduce the viscosity and shear stress of materials in biological 3D printing, a multidimension microvibration assisted hydrogel 3D printing method was proposed. The compliant mechanism driven by piezoceramic was applied to 3D printing of hydrogels. The shear stress and viscosity of hydrogels could be effectively reduced by multidimension microvibration. Simulation analysis of the extrusion device was carried out to study the influence of vibration parameters on viscosity and shear stress, and optimized multidimension vibration forms and vibration parameters were selected for experiments. The experiment results show that multidimension microvibration can effectively reduce the viscosity of hydrogels and improve printing resolution and print speed.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by National Natural Science Foundation of China (Grant No. 51775078).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.