474
Views
0
CrossRef citations to date
0
Altmetric
Article

Structure design and mechanical performance analysis of three kinds of bioresorbable poly-lactic acid (PLA) stents

, , , &
Pages 25-37 | Received 11 Sep 2021, Accepted 19 Feb 2022, Published online: 26 Mar 2022
 

Abstract

Vascular stent implantation has become an important choice for the treatment of severe cardiovascular and cerebrovascular blockage. Rational design is vital to ensure the mechanical properties of the vascular stents, which are important both to the implantation and service as for clinical treatment of coronary heart disease. Therefore we proposed a wholly new non-uniform honeycomb stent E and compared with an inverted honeycomb-like shaped stent F and a honeycomb-like shaped stent G. To evaluate their properties, a finite element method (FEM) was used to simulate the implantation process (crimp, crimp recoil, expand, and expand recoil) of these three different kinds of stents. Results showed that the stent E exhibits better mechanical behaviour than the other two stents F and G as far as radial strength and axial shortening performances and that the distribution of equivalent stress among the stent E is more uniform than that among the other two stents F and G. After that, a three-point bending method was used to study the bending flexibility of these three vascular stents. Stent E shows high bending stiffness compared with stents F and G due to the existence of additional support bridges in its structure. This study can be helpful to the rational design of optimizable PLA stents for its practical clinical performance and therefore possibly improve the prognosis of patients.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This study supported by the Natural Science Foundation of China (No. 21104031), Education Department of Hunan Province in 2020 (No. 20C1589), Postgraduate Scientific Research Innovation Project of Hunan Province (QL20210219).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.