218
Views
1
CrossRef citations to date
0
Altmetric
Articles

Modelling the role of membrane mechanics in cell adhesion on titanium oxide nanotubes

ORCID Icon, , , &
Pages 281-290 | Received 24 Jul 2021, Accepted 24 Mar 2022, Published online: 05 Apr 2022
 

Abstract

Titanium surface treated with titanium oxide nanotubes was used in many studies to quantify the effect of surface topography on cell fate. However, the predicted optimal diameter of nanotubes considerably differs among studies. We propose a model that explains cell adhesion to a nanostructured surface by considering the deformation energy of cell protrusions into titanium nanotubes and the adhesion to the surface. The optimal surface topology is defined as a geometry that gives the membrane a minimum energy shape. A dimensionless parameter, the cell interaction index, was proposed to describe the interplay between the cell membrane bending, the intrinsic curvature, and the strength of cell adhesion. Model simulation shows that an optimal nanotube diameter ranging from 20 nm to 100 nm (cell interaction index between 0.2 and 1, respectively) is feasible within a certain range of parameters describing cell membrane adhesion and bending. The results indicate a possibility to tune the topology of a nanostructural surface in order to enhance the proliferation and differentiation of cells mechanically compatible with the given surface geometry while suppressing the growth of other mechanically incompatible cells.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This research was funded by the Czech grant agency grant number 16-14758S and by the Ministry of Health of the Czech Republic, grant number NU20-06-00424.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.