201
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A method of classification decision based on multi-BiLSTMs for physical loads hierarchy

, , , , &
Pages 1101-1113 | Received 02 Apr 2022, Accepted 23 Jul 2022, Published online: 03 Aug 2022
 

Abstract

Human gait is systematically deformed by physical loads, this study constructs and evaluates an algorithm for classifying different levels of physical loads. The algorithm uses wearable IMUs data to classify different levels of loads. We aim to evaluate classification as strategy for multi-loads recognition for the control of wearable exoskeletons. 10 adults participated in the experiment. In the experiment, the subjects walked on flat ground carrying a backpack with different weight of loads (0, 15 and 25 kg), and three sensors on the lower limbs collected the subjects' gait data in real time. In this study, a method of classification decision based on multiple bidirectional long short-term memory(multi-BiLSTMs) was proposed which was used to classify the load level of the collected data. The classification accuracy of this method reached 94.1%, and the F-score was 0.935–0.952. Compared with LSTM and BiLSTM, the proposed method has better performance in accuracy of load classification. The results of this study contribute to quantify the load, which has promising applications in the medical and labor protection fields.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

Changjiang River Scientific Research Institute.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.