298
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Weighted entropy deep features on hybrid RNN with LSTM for glucose level and diabetes prediction

&
Pages 1834-1858 | Received 30 Dec 2021, Accepted 15 Nov 2022, Published online: 30 Nov 2022
 

Abstract

Glucose level regulation with essential advice regarding diabetes must be provided to the patients to maintain their diet for diabetes treatment. Therefore, the academic community has focused on implementing novel glucose prediction techniques for decision support systems. Recent computational techniques for diagnosing diabetes have certain limitations, and also they are not evaluated under various datasets obtained from the different people of various countries. This generates inefficiency in the prediction systems to apply it in real-time applications. This paper plans to suggest a hybrid deep learning model for diabetes prediction and glucose level classification. Two benchmark datasets are used in the data collection process for experimenting. Initially, the deep selected features were extracted by the Convolutional Neural Network (CNN). Further, weighted entropy deep features are extracted, where the tuning of weight is taken place by the Modified Escaping Energy-based Harris Hawks Optimization. These features are processed in the glucose level classification using the modified Fuzzy classifier for classifying the high-level and low-level glucose. Further, glucose prediction is done by the Hybrid Recurrent Neural Network (RNN), and Long Short Term Memory (LSTM) termed R-LSTM with parameter optimization. From the experimental result, In the dataset 2 analyses on SMAPE, the MEE-HHO-R-LSTM is 12.5%, 87.5%, 50%, 12.5%, and 2.5% better than SVM, LSTM, DNN, RNN, and RNN-LSTM, at the learning percentage of 75%. The analytical results enforce that the suggested methods attain enhanced prediction performance concerning the evaluation metrics compared to conventional prediction models.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.