220
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Low and high viscosity bulk-fill composite resins stress distribution in primary molar tooth inlay cavity

ORCID Icon
Pages 411-418 | Received 24 Feb 2023, Accepted 12 May 2023, Published online: 22 May 2023
 

Abstract

The aim of this study is to evaluate the stress distributions of low and high viscosity bulk-fill composite resins at class II MOD inlay cavity in primary molar tooth using Finite Element Analysis (FEA). Original DICOM data of a primary molar tooth from a research archive was used to create a 3D model. Two models were prepared as Model 1: the tooth model without restoration (control group) and Model 2: the tooth model with class II MOD inlay restoration. Two different bulk-fill composite resins were tested in study: Model 2 A (class II MOD inlay cavity model restored with low viscosity bulk-fill composite resin) and Model 2B (class II MOD inlay cavity model restored with high viscosity bulk-fill composite resin). Occlusal vertical loading of 232 N was applied to the teeth in occlusal contact areas. Maximum Von Mises stress values in the models for enamel, dentin, and restorative material were evaluated as MPa. More intense stress accumulation is observed in enamel than in dentin. In addition, more stress values were determined in Model 2B (206.15 MPa, 32.76 MPa, 128.95 MPa) than in Model 2 A (203.39 MPa, 29.77 MPa, 120.61 MPa) for enamel, dentin and restorative material, respectively.

Acknowledgment

The author would like to thank Prof. Dr Cigdem Guler for allowing the use of DICOM data of the primary second molar used in the modeling, and consultancy on dental issues.

Authorship contribution statement

Mehmet Sami Guler: Conceptualization, Methodology, Formal analysis, Investigation, Visualization, Writing – original draft.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.