0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An improved empirical mode decomposition method with ensemble classifiers for analysis of multichannel EEG in BCI emotion recognition

&
Received 07 Dec 2023, Accepted 12 Jun 2024, Published online: 26 Jun 2024
 

Abstract

Emotion recognition using EEG is a difficult study because the signals’ unstable behavior, which is brought on by the brain’s complex neuronal activity, makes it difficult to extract the underlying patterns inside it. Therefore, to analyse the signal more efficiently, in this article, a hybrid model based on IEMD-KW-Ens (Improved Empirical Mode Decomposition-Kruskal Wallis-Ensemble classifiers) technique is used. Here IEMD based technique is proposed to interpret EEG signals by adding an improved sifting stopping criterion with median filter to get the optimal decomposed EEG signals for further processing. A mixture of time, frequency and non-linear distinct features are extracted for constructing the feature vector. Afterward, we conducted feature selection using KW test to remove the insignificant ones from the feature set. Later the classification of emotions in three-dimensional model is performed in two categories i.e. machine learning based RUSBoosted trees and deep learning based convolutional neural network (CNN) for DEAP and DREAMER datasets and the outcomes are evaluated for valence, arousal, and dominance classes. The findings demonstrate that the hybrid model can successfully classify emotions in multichannel EEG signals. The decomposition approach is also instructive for improving the model’s utility in emotional computing.

Disclosure statement

The authors declare no conflict of interest.

Data availability statement

The datasets used for this work is available on DEAP: https://www.eecs.qmul.ac.uk/mmv/datasets/deap/. DREAMER: https://zenodo.org/records/546113.

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.