0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical investigation of driver injury risks in car-to-end terminal crashes using a human finite element model

ORCID Icon, & ORCID Icon
Received 13 Feb 2024, Accepted 18 Jul 2024, Published online: 09 Aug 2024
 

Abstract

Although the safety performance of guardrail end terminals is tested using crash tests in the U.S., occupant injury risks are evaluated based on the flail-space model. This approach developed in the early 1980s neglects the influence of safety features (e.g. seatbelt, airbags, etc.) installed in late model vehicles. In this study, a vehicle (sedan, 1100 kg), a guardrail end terminal (ET-Plus) and a human body model (Global Human Body Model Consortium, GHBMC) were integrated to simulate car-to-end terminal crashes. Five velocities, two offsets, and two angles were used as pre-impact conditions. In all the 20 simulations, kinematics and kinetic data were recorded in GHBMC and vehicle models to calculate the GHBMC injury probabilities and vehicle-based injury metrics, correspondingly. Pre-impact velocity was observed to have the largest effect on the occupant injury measures. All the body-region and full-body injury risks increased with the increasing velocity. Meanwhile, the angles had a larger effect than offset to the change of full-body injury risk (9.1% vs. 0.3%). All the vehicle-based metrics had good correlations to full-body injury probabilities. Occupant Impact Velocity (OIVx), Acceleration Severity Index (ASI), and Theoretical Head Impact Velocity (THIV) had a good correlation to chest, thigh, upper tibia, and lower tibia injuries. All the other correlations (e.g. brain/head injuries) were not statistically significant. The results pointed out that more vehicle-based metrics (ASI and THIV) could help improve the predictability in terms of occupant injury risks in the tests. Numerical methodology could be used to assess head and brain injury probabilities, which were not predictable by any vehicle-based metrics.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.