216
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Investigation of the stereochemical course of ene reductase-catalysed reactions by deuterium labelling

, , &
Pages 24-32 | Received 03 Sep 2014, Accepted 18 Dec 2014, Published online: 12 Feb 2015
 

Abstract

The stereoselective reduction of suitably substituted C═C bonds mediated by enzymes, called ene reductases, has received great attention in the last decade. Some successful applications of this biocatalysed procedure to the synthesis of chiral active pharmaceutical ingredients have been reported in the literature. The generation of suitable models to be used for predicting the stereochemical outcome of this kind of reductions is a challenging task. In the last years we have exploited deuterium labelling to investigate the stereochemical course of the enzyme-mediated reductions of a wide collection of substrates belonging to well-defined chemical classes. The results of this research have allowed us to draw conclusions on the relationship between the structural characteristics of the substrate and the binding mode it adopts in the enzyme active site. The collected data can be exploited to create an empirical model to rationalise and predict the stereoselectivity of old yellow enzyme (OYE)-catalysed reductions.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 577.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.