301
Views
1
CrossRef citations to date
0
Altmetric
Articles

Anaerobic oxidation of methane coupled with sulphate reduction: high concentration of methanotrophic archaea might be responsible for low stable isotope fractionation factors in methane

ORCID Icon, &
Pages 44-59 | Received 22 Nov 2020, Accepted 05 Oct 2021, Published online: 30 Nov 2021
 

ABSTRACT

The changes in δ13CH4 and δ12C1H32H during sulphate-dependent anaerobic oxidation of methane (AOM) were described using dynamic modelling. The batch sulphate-dependent AOM at the nearly linear dynamics of methane oxidation with different enriched cultures originating from three marine sediments was simulated. The traditional Rayleigh equation for carbon and hydrogen stable isotopes in methane was derived from the basic dynamic isotope equation. The general and reduced models, taking into account the reaction stoichiometry and based on balances of chemical elements and their isotopes, describes a redistribution of stable isotope values in the sulphate-dependent AOM process. It was shown that AOM is the first and rate-limiting step in the whole AOM + SR (sulphate reduction) process. The different fractionation factors of carbon and hydrogen isotopes in methane were obtained for three marine sediments. It was concluded that during incubation the highest concentration of methanotrophic archaea might be responsible for the lowest fractionation factors of stable isotopes of carbon and hydrogen in methane. The interpretation of this phenomenon was suggested. Different concentrations of methanotrophic archaea can lead to variations of isotope fractionation factors.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The work was carried out in 2019–2020 according to the plans of the Water Problems Institute of the Russian Academy of Sciences, Russia (N state registration under state assignment AAAA-A18-118022090104-8).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 577.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.