269
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis and biological evaluation of novel benzyl-substituted flavones as free radical (DPPH) scavengers and α-glucosidase inhibitors

, , , , &
Pages 978-984 | Received 04 Jun 2010, Accepted 23 Jul 2010, Published online: 08 Nov 2010
 

Abstract

Pharmacologically motivated natural product investigations have yielded a large variety of structurally unique lead compounds with interesting biomedical properties, but the natural roles of these molecules often remain unknown. In the present investigation, a series of benzyl substituted-flavone derivatives have been synthesized from the lead compounds and were screened against 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging and α-glucosidase inhibitory properties. The resulting activity profiles of these flavone derivatives were compared for degree of similarity to the profile of 13. Most of the synthesized derivatives displayed potent activities when compared to the parent compounds. Maximum potencies for DPPH free radical scavenging activity were observed only in compounds containing the 4-hydroxyl substitution and 3-methoxyl group on the phenyl ring. While the 2- and 4-hydroxyl group substitutions on the phenyl ring seem to be crucial for the intestinal α-glucosidase inhibitory activity.

Acknowledgements

The authors thank Dr J.S. Yadav, Director, IICT, for his encouragement and support during the course of this work. G.S.K. and R.S.R. thank CSIR, New Delhi for the financial support.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 426.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.