265
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

DNA damage induced by shikonin in the presence of Cu(II) ions: potential mechanism of its activity to apoptotic cell death

, , &
Pages 12-19 | Received 12 Jun 2010, Accepted 31 Oct 2010, Published online: 19 Jan 2011
 

Abstract

Shikonin (β-alkannin), a naphthazarin derivative, has shown a variety of abilities such as anti-inflammatory, antitumoral, cytotoxic, and antimicrobial activities. In the presence of Cu(II), shikonin caused breakage of supercoiled plasmid pBR322 DNA. Other metal ions tested [Mg(II), Ca(II), and Ni(II)] were ineffective and only Fe(II) has the same ability in the DNA breakage reaction. The involvement of active oxygen in the reaction was established by the inhibition of DNA breakage by superoxide dismutase, catalase, thiourea, sodium azide, potassium iodide, and sodium benzoate. Cu(I) was shown to be an essential intermediate using the Cu(I)-specific sequestering reagent neocuproine. Shikonin induced HeLa cell apoptosis involved in the mechanism of increasing intracellular reactive oxygen species (ROS). It was suggested that shikonin generated ROS as a pro-oxidant in the presence of Cu(II), and ROS resulted in DNA damage and apoptotic cell death in cells.

Acknowledgements

The authors would like to acknowledge the financial support from Major Program of National Natural Science Foundation of China (20732004) and the Natural Science Foundation of Fujian Province, China (2009J01192).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 426.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.