192
Views
2
CrossRef citations to date
0
Altmetric
Articles

EM-E-11-4 increases paclitaxel uptake by inhibiting P-glycoprotein-mediated transport in Caco-2 cells

, , , , , , , & show all
Pages 649-655 | Received 10 Jan 2015, Accepted 06 May 2015, Published online: 05 Jun 2015
 

Abstract

P-glycoprotein (P-gp) overexpression is the main mechanism involved in chemotherapy drug resistance such as paclitaxel resistance and therapy failure. The most widely studied P-gp inhibitors still have limited ability to reverse resistance in the clinic. In this study, EM-E-11-4, a lathyrane-type diterpenoid isolated from Euphorbia micractina, was found to significantly increase paclitaxel uptake in Caco-2 cells, which functionally overexpressed P-gp. In vitro transport experiments, carried out in the Caco-2 monolayer model, indicated that EM-E-11-4 significantly reduced the efflux ratio of paclitaxel transport by inhibiting P-gp function without affecting P-gp expression. We also found that EM-E-11-4 enhanced the intracellular accumulation of paclitaxel in a dose-dependent manner by LC-MS/MS and EM-E-11-4 showed low cytotoxicity. Hence, EM-E-11-4 is an effective potential agent to reverse P-gp-mediated paclitaxel resistance by inhibiting P-gp transport function and increasing the intracellular concentration of paclitaxel.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

We are grateful to the National Natural Science Foundation of China [grant number 21172266] for financial support of this research.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 426.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.