203
Views
30
CrossRef citations to date
0
Altmetric
Miscellany

An inexact two-stage mixed integer linear programming model for waste management under uncertainty

, &
Pages 187-206 | Received 03 Oct 2003, Accepted 01 Apr 2004, Published online: 25 Jan 2007
 

Abstract

This paper introduces a hybrid optimization approach, an inexact two-stage mixed integer linear programming (ITMILP) model, for the planning of regional solid waste management systems under uncertainty. The model improves upon the existing mixed integer, two-stage stochastic and interval-parameter programming approaches by allowing uncertainties presented as random distributions and discrete intervals, as well as policies expressed as allowable waste-loading targets to be effectively incorporated within a general optimization framework. In the modeling formulation, penalties are imposed when the policies are violated. In its solutions algorithm, the ITMILP model is transformed into two deterministic submodels, which were solved sequentially. Application of the developed methodology to the planning of a waste management system indicates that reasonable solutions for the binary and continuous decision variables can be generated through this approach. Considerable information was generated regarding decisions of facility expansion within a multi-period, multi-scale and multi-waste-level context; and optimal waste flow allocation patterns were achieved within the waste management system. The ITMILP model was then employed to generate a number of decision alternatives under various policy conditions, allowing for more in-depth analyses of tradeoffs between environmental and economic objectives.

Acknowledgement

This study was supported by the National High Technology Research Foundation (No. 2001AA644020), the Natural Science Foundation (No. 50225926 and 70171055), the Outstanding Scholars Program of CAS, and the Natural Science and Engineering Research Council of Canada.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 772.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.