256
Views
39
CrossRef citations to date
0
Altmetric
Original Articles

Estimating risk of contaminant intrusion in water distribution networks using Dempster–Shafer theory of evidence

, &
Pages 129-141 | Received 09 Dec 2005, Published online: 25 Jan 2007
 

Abstract

Intrusion of contaminants into water distribution networks requires the simultaneous presence of three elements: contamination source, pathway and driving force. The existence of each of these elements provides ‘partial’ evidence (typically incomplete and non-specific) to the occurrence of contaminant intrusion into distribution networks. Evidential reasoning, also called Dempster–Shafer theory, has proved useful to incorporate both aleatory and epistemic uncertainties in the inference mechanism. The application of evidential reasoning to assess risk of contaminant intrusion is demonstrated with the help of an example of a single pipe. The proposed approach can be extended to full-scale water distribution networks to establish risk-contours of contaminant intrusion. Risk-contours using GIS may help utilities to identify sensitive locations in the water distribution network and prioritize control and preventive strategies.

Acknowledgements

This article presents the results of a preliminary investigation of an ongoing research project, which is co-sponsored by the American Water Works Association Research Foundation (AwwaRF) and National Research Council (NRC) of Canada.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 772.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.