152
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Modelling constant displacement rate experiments of asphalt concrete using a thermodynamic framework

, , , &
Pages 241-256 | Received 08 Dec 2004, Accepted 13 Sep 2005, Published online: 31 Jan 2007
 

Abstract

This study is concerned with the constitutive modeling of asphalt concrete mixtures. The response of the asphalt concrete pavement depends on its internal structure. The internal structure of the asphalt concrete mixture evolves during the loading process. Here, we develop a single constituent model for asphalt concrete mixture by associating different natural configurations (stress-free configurations) with distinct internal structures of the body. The evolution of the natural configurations is determined using a thermodynamic criterion, namely the maximization of the rate of dissipation. Making appropriate assumptions concerning the manner in which the body stores and dissipates energy, the constitutive relations for the stress is deduced. Constant displacement rate experiments are carried out at different confinement pressures on asphalt concrete specimens made of two different aggregates—granite and limestone. The efficacy of the model in predicting the mechanical response of asphalt concrete mixtures is shown by corroborating the model predictions with the experimental results.

Keywords:

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 225.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.