586
Views
37
CrossRef citations to date
0
Altmetric
Articles

Simultaneous effects of salted water and water flow on asphalt concrete pavement deterioration under freeze–thaw cycles

&
Pages 383-391 | Received 21 Oct 2010, Accepted 16 Mar 2012, Published online: 10 Apr 2012
 

Abstract

The presence of water flow on road surfaces may lead to early deterioration of bituminous pavements. The adverse impacts of various anti-freezing materials on road surface performance have drawn the attention of many researchers. However, the simultaneous effects of salted water and water flow on the deterioration of road surfaces, particularly under freeze–thaw conditions, have not been adequately addressed. This research aims to study the combined effects of water flow and anti-freezing materials, which are usually present in the vicinity of asphaltic pavements during freeze–thaw cycles, on asphalt concrete deterioration. Two sets of asphalt concrete samples were prepared and subjected to six exposure states. The samples were also tested in an abrasion test apparatus and subjected to normal and frictional forces. Marshall strength loss and weight loss of the samples were measured and the results were analysed. The results indicated that the combined effects of water flow and de-icers under freeze–thaw conditions intensified the deterioration of asphalt concrete.

Acknowledgements

The authors would like to thank the Imam Khomeini International University Research Fund, which supported this study. Thanks are also extended to Mr Reza Hazrati for conducting the experiments.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 225.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.