406
Views
15
CrossRef citations to date
0
Altmetric
Articles

Characterisation and modelling of vapour-conditioned asphalt binders using nanoindentation

, &
Pages 382-396 | Received 03 Dec 2014, Accepted 15 Dec 2014, Published online: 05 Feb 2015
 

Abstract

Nanoindentation tests were conducted on unconditioned and vapour-conditioned asphalt binder samples to determine damage processes by characterising contact creep data and using viscoelastic mechanical models. For vapour-conditioned asphalt binders, a thin film of asphalt binder was prepared on a glass slide and subjected to relative humidity (RH) of 25%, 49% and 71% inside enclosed desiccators using three aqueous solutions: potassium acetate, potassium carbonate and sodium chloride, respectively. Based on the nanoindentation contact creep test data, it was observed that vapour-conditioned asphalt binders showed larger indentation viscous depth than the unconditioned binders. Indentation test data were modelled using viscoelastic mechanical models such as Burgers and Maxwell models. The models showed that elasticity increased and viscosity decreased in the vapour-conditioned asphalt binders. In 71% RH-conditioned binders, elastic components of Burgers model, E1 and E2 increased about 10% and 15%, respectively, compared to the unconditioned binder. The relaxation time decreased about 35% and retardation time increased about 69% in 71% RH-conditioned binders compared to unconditioned binders.

Notes

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 225.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.