375
Views
7
CrossRef citations to date
0
Altmetric
Articles

A micromechanical model to create digital microstructures of asphalt mastics and crumb rubber-modified binders

, &
Pages 754-764 | Received 10 May 2015, Accepted 23 May 2015, Published online: 27 Jul 2015
 

Abstract

This paper presents a micromechanical model to develop digital microstructures of asphalt mastics and crumb rubber-modified binders. The micromechanical model was based on the dissipative particle dynamics (DPD) model that is typically used for modelling suspensions. This paper utilises X-ray tomography images of particles to create microstructures. First, a database of 3D images of crumb rubber particles were generated by scanning specimens using X-ray computed tomography and X-ray microtomography. Once the 3D images were generated for individual particle shapes, a series of spherical harmonic (SH) functions were fitted to the surface of the particles and SH coefficients were determined. Utilisation of SH coefficients for each particle (rather than the actual 3D image voxels) allowed efficient numerical DPD simulations performed to generate microstructures. Example simulations were performed to generate microstructures and used to generate finite element meshes and exported to ABAQUS. The linear viscoelastic responses of the microstructures were simulated using ABAQUS and compared to the measured values.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 225.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.