449
Views
12
CrossRef citations to date
0
Altmetric
Articles

Preliminary investigation of using a multi-component phase field model to evaluate microstructure of asphalt binders

&
Pages 775-782 | Received 30 Apr 2015, Accepted 03 May 2015, Published online: 24 Jul 2015
 

Abstract

Asphalt mixtures are engineered and designed by treating the mixture as a two-component composite of the binder and mineral aggregate. Typically, asphalt binder is regarded as a homogeneous ‘glue’ that binds the mineral aggregates. However, there is a strong body of evidence in the literature spanning over five decades that indicates that the asphalt binder can be modelled as a colloid with a distinct microstructure. The introduction of advanced microscopic techniques such as Atomic Force Microscopy has generated a renewed interest in being able to better understand the relationship between the chemical makeup of the asphalt binder, its microstructure and engineering properties. The objective of this paper is to present a preliminary phase field model that was used to model the evolution of microstructure of a mixture comprising four fractions with different polarities, analogous to that of the asphalt binder. This work extends the concepts developed in previous research studies to explain the evolution of damage and self-healing at a micrometre length scale in asphalt binders. Although the model and parameters presented in this paper are not a definitive description of the microstructure evolution in asphalt binders, results show that with additional work on rigorous parameter estimation this methodology can be used as a reasonable approach to better understand the relationship between binder composition and microstructure evolution.

Acknowledgements

The authors would also like to acknowledge the many discussions with Prof. Scarpas and Dr Schmets from TU-Delft that have helped guide this study. This work was supported by National Science Foundation [CMMI-1053925].

Notes

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the National Science Foundation (NSF) [CMMI-1053925].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 225.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.