427
Views
19
CrossRef citations to date
0
Altmetric
Articles

Aggregate distribution influence on the indirect tensile test of asphalt mixtures using the discrete element method

&
Pages 668-681 | Received 09 Jan 2014, Accepted 16 Nov 2015, Published online: 30 Dec 2015
 

Abstract

The purpose of this study is to investigate the effect of horizontal aggregate distribution, i.e. aggregate distribution in horizontal cross sections, on the indirect tensile (IDT) test of asphalt mixtures. An index of aggregate homogeneity, used to evaluate the aggregate distribution in a two-dimensional (2D) cross section, was comprehensively described; the horizontal aggregate distribution was evaluated by the index. A microstructure-based discrete element model for predicting the IDT test results was established by a discrete element program called particle flow code in two dimensions (PFC2D). Based on this model and by loading horizontal cross sections of asphalt mixtures along different directions, the effects of horizontal aggregate distribution on the splitting strength and maximum horizontal stress with regard to an IDT test were numerically simulated by means of the discrete element method; the obtained results were verified by performing an actual IDT test. Results reveal that the splitting strengths and maximum horizontal stresses in the IDT test exhibit anisotropy. Furthermore, it is revealed that there is an insignificant correlation between the horizontal aggregate distributions and the average splitting strengths and average maximum horizontal stresses, as well as a significant correlation between the horizontal aggregate distributions and the variations in the splitting strengths and maximum horizontal stresses.

Acknowledgements

The authors would like to thank the Zhejiang Provincial Natural Science Foundation of China (LY15E080006) and China Scholarship Council for their financial support of this research.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 225.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.