502
Views
13
CrossRef citations to date
0
Altmetric
Articles

Influence of different sources of microstructural heterogeneity on the degradation of asphalt mixtures

ORCID Icon, ORCID Icon, &
Pages 9-23 | Received 08 Jan 2016, Accepted 16 Jan 2016, Published online: 19 Feb 2016
 

Abstract

The response and degradation of the hot mix asphalt (HMA) materials used in pavement structures are affected by their inherent heterogeneity. The objective of this work is to study the impact of two different sources of HMA heterogeneity in the uncertainty of the mechanical moisture degradation of HMA. The first source of heterogeneity is the spatial variability of the properties of the bulk fine aggregate matrix (FAM) of the mixture, and the second is the location and shape of the coarse aggregate particles. The heterogeneity of the bulk FAM phase was modelled using a random field technique, while that of the coarse aggregates was accounted for by randomly generating realistic probable sets of aggregate particles. Thus, ‘computational replicates’ of HMA microstructures were generated and subjected to moisture diffusion and mechanical loading using a finite element approach. In the mechanical simulations, a non-linear viscoelastic moisture damage constitutive relationship based on continuum damage mechanics theory was selected to characterise the response of the bulk FAM phase. The results show that conducting computational simulations with realistic HMA microstructures that properly capture the heterogeneity of the material is useful to quantify the mean values and dispersion (i.e. uncertainty) associated with the response and degradation of the mixture. This information, which cannot be easily obtained in the field or in the laboratory due to the difficulty of acquiring a sufficient amount of data, is useful to conduct structural reliability analysis and to predict the life cycle behaviour of the material.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 225.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.