232
Views
6
CrossRef citations to date
0
Altmetric
Articles

Accuracy enhancement of roadway anomaly localization using connected vehicles

ORCID Icon &
Pages 75-81 | Received 29 Sep 2015, Accepted 02 Mar 2016, Published online: 18 Mar 2016
 

Abstract

The timely identification and localisation of roadway anomalies that pose hazards to the traveling public is currently a critical but very expensive task. Hence, transportation agencies are evaluating emerging alternatives that use connected vehicles to lower the cost dramatically and to increase simultaneously both the monitoring frequency and the network coverage. Connected vehicle methods use conventional GPS receivers to tag the inertial data stream with geospatial position estimates. In addition to the anticipated GPS trilateration errors, numerous other factors reduce the accuracy of anomaly localisation. However, practitioners currently lack information about their characteristics and significance. This study developed error models to characterise the factors in position biases so that practitioners can estimate and remove them. The field studies revealed the typical and relative contributions of each factor, and validated the models by demonstrating agreement of their statistics with the anticipated norms. The results revealed a surprising potential for tagging errors from embedded systems latencies to exceed the typical GPS errors and become dominant at highway speeds.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 225.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.