702
Views
25
CrossRef citations to date
0
Altmetric
Articles

Characterisation of high-performance cold bitumen emulsion mixtures for surface courses

, , &
Pages 509-518 | Received 07 Jul 2015, Accepted 15 Mar 2016, Published online: 25 Apr 2016
 

Abstract

Cold bitumen emulsion mixture (CBEM) is not yet widely used as a surface course around the world. In this study, 0/14-mm-size dense-graded surface course CBEMs have been investigated. The mechanical performance was evaluated in terms of stiffness modulus over 3 months and resistance to permanent deformation under three different stress levels (100, 200, 300 kPa), whilst durability evaluation was carried out in terms of resistance to moisture and frost damage. The study has also investigated the incorporation of low cement content (1%) with relatively sustainable by-product fillers, namely ground-granulated blast furnace slag (GGBS) and fly ash (FA) type 450-S on both mechanical and durability performance. A comparison has been carried out  between the low and high cement content CBEM, as well as with respect to corresponding hot mix asphalt (HMA). The results revealed that the incorporation of GGBS and FA in CBEMs leads to superior performance, similar to CBEMs treated with high cement content and comparable to an equivalent HMA. Furthermore, GGBS replacement exhibited better performance than that of FA replacement. The findings suggest that the new sustainable types of CBEM can be developed for using as a surface layer for medium- to heavy-trafficked roads.

Acknowledgements

The first author would like to acknowledge the University of Nottingham which has funded this research through the Dean of Engineering Research Scholarship for International Excellence. Furthermore, the authors wish to express their sincere gratitude to the technicians at the Nottingham Transportation Engineering Centre for their support and assistance. The authors gratefully acknowledge the valuable support of Nynas and Hanson for providing the bitumen emulsions and slag, respectively.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 225.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.