Publication Cover
Assistive Technology
The Official Journal of RESNA
Volume 34, 2022 - Issue 5
467
Views
4
CrossRef citations to date
0
Altmetric
Articles

Validating a wheelchair in-seat activity tracker

, MSORCID Icon, , PhDORCID Icon, , PhDORCID Icon & , PhD, PTORCID Icon
Pages 588-598 | Accepted 17 Feb 2021, Published online: 06 Apr 2021
 

ABSTRACT

Wheelchair users often experience prolonged periods of stationary sitting. Such periods are accompanied with increased loading of the ischial tuberosities. This can lead to the development of pressure ulcers which can cause complications such as sepsis. Periodic pressure offloading is recommended to reduce the onset of pressure ulcers. Experts recommend the periodic execution of different movements to provide the needed pressure offloading. Wheelchair users, however, might not remember to perform these recommended movements in terms of both quality and quantity. A system that can detect such movements could provide valuable feedback to both wheelchair users as well as clinicians. The objective of this study was to present and validate the WiSAT – a system for characterizing in-seat activity for wheelchair users. WiSAT is designed to detect two kinds of movements – weight shifts and in-seat movements. Weight shifts are movements that offload pressure on ischial tuberosities by 30% as compared to upright sitting and are maintained for 15 seconds. In-seat movements are shorter transient movements that involve either a change in the center of pressure on the sitting buttocks or a transient reduction in total load by 30%. This study validates the use of WiSAT in manual wheelchairs. WiSAT has a sensor mat which was inserted beneath a wheelchair cushion. Readings from these sensors were used by WiSAT algorithms to predict weight shifts and in-seat movements. These weight shifts and in-seat movements were validated against a high-resolution interface pressure mat in a dataset that resembles real-world usage. The proposed system achieved weight shift precision and recall scores of 81% and 80%, respectively, while in-seat movement scores were predicted with a mean absolute error of 22%. Results showed that WiSAT provides sufficient accuracy in characterizing in-seat activity in terms of weight shifts and in-seat movement.

Additional information

Funding

This work was supported by the NIH [R01AG056255]; Department of Defense, Spinal Cord Injury Research Program [W81XWH-17-1-0221]. This work was also supported by Praxis Spinal Cord Research Institute.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 95.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.