71
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

A Simplified Model to Study EHL Film Collapse During Rapid Halting Motion

&
Pages 512-520 | Published online: 25 Mar 2008
 

Abstract

A theoretical model for describing the EHL film thickness during rapid deceleration is presented. The theory is based on the pioneer work of Ertel (1939) and Grubin (1949), who gave the first analytical solution for the elastohydrodynamic lubrication of a line contact under stationary operating conditions. An extension is made here for rapid halting motion. The proposed model is well adapted when the halting period is small in comparison to the transit time (i.e. 2b/u, ratio between the contact width and the rolling speed). This work completes the model of Glovnea and Spikes (2001b), appropriate for slow halting motion but which suffers from experimental fitting, and the model of Chang (2000) that is more suitable for speed or load oscillations at a wavelength close to the transit time.

This behavior implies that stop-start, reciprocating or rapidly halting machine components may be able to maintain a separating film for longer than would be expected based on steady-state EHL theory. An application to a ball bearing arrangement in a space mechanism is finally made in order to assess the model capabilities.

Presented at the 57th Annual Meeting in Houston, Texas May 19–23, 2002

Notes

Presented at the 57th Annual Meeting in Houston, Texas May 19–23, 2002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.