423
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

An Approach to Understanding Micro-Spalling in High-Speed Ball Bearings Using a Thermal Elastohydrodynamic Model

, &
Pages 534-543 | Received 01 Jun 2008, Accepted 15 Jan 2009, Published online: 15 Feb 2011
 

Abstract

High-speed main shaft ball bearings applied in new aircraft propulsion systems experience the most critical operating conditions ever in rolling bearing history. Rotational speeds, loads, temperatures, and demands on reliability have increased continuously over the last few years. The frequency of classical subsurface material fatigue in high-speed ball bearings is low due to designs with Hertzian stresses far below the fatigue stress limit. Corresponding to increasing speeds and temperatures, surface initiated fatigue became the most important failure mode of high-speed ball bearings. This article shows an approach to describe the phenomenon of micro-spalling in high-speed ball bearings supporting jet engine main shafts by using a thermal, Newtonian, fully flooded elastohydrodynamic model. The basic failure mode, kinematics, loads, and the results obtained within the contact zones of the ball bearing for various operating conditions are presented.

Review led by Bob Bruce

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 174.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.